
FAIR Data Point
Release 1.2.1

Dutch Techncentre for Life Sciences

Apr 16, 2020

ABOUT

1 About FAIR Data Point 1
1.1 Features . 1
1.2 Security . 1

2 Users and Roles 3
2.1 FAIR Data Point Roles . 3
2.2 Catalog Roles . 3
2.3 Dataset Roles . 3

3 Components 5
3.1 Triple Store . 6
3.2 MongoDB . 6
3.3 FAIRDataPoint . 6
3.4 FAIRDataPoint-client . 6
3.5 Reverse Proxy . 6

4 Local Deployment 7
4.1 Running locally on a different port . 8
4.2 Persistence . 8

5 Production Deployment 11

6 Advanced Configuration 15
6.1 Triple Stores . 15
6.2 Mongo DB . 17
6.3 Default attached metadata . 17
6.4 PID System . 17
6.5 Customizations . 18
6.6 Running FDP on a nested route . 19

7 Usage 21
7.1 About metadata extension . 21
7.2 Features . 21

8 Setup 23
8.1 Installation . 23
8.2 Configuration . 24
8.3 Compatibility . 25

9 Contributing 27
9.1 Development . 27

i

10 Roadmap 29

ii

CHAPTER

ONE

ABOUT FAIR DATA POINT

FAIRDataPoint is a REST API and Web Client for creating, storing, and serving FAIR metadata. The metadata
contents are generated semi-automatically according to the FAIR Data Point software specification document.

1.1 Features

• Store catalogs, datasets, and distributions

• Manage users

• Manage access rights to your catalogs, datasets, and distributions

1.2 Security

We have two levels of accessibility in FDP. All resources (e.g., catalogs, datasets,. . .) are publicly accessible. You
don’t need to be logged in to browse them. If you want to upload your own resources, you need to be logged in.
To get an account, you need to contact an administrator of the FDP. By default, all uploaded resources are publicly
accessible by anyone. But if you want to allow someone to manage your resources (edit/delete), you need to allow it
in the resource settings.

We have two types of roles in FDP - an administrator and a user. The administrator is allowed to manage users and all
resources. The user can manage just the resources which he owns.

1

https://dtl-fair.atlassian.net/wiki/display/FDP/FAIR+Data+Point+software+specification

FAIR Data Point, Release 1.2.1

2 Chapter 1. About FAIR Data Point

CHAPTER

TWO

USERS AND ROLES

There are different roles for different levels in the FAIR Data Point.

2.1 FAIR Data Point Roles

2.1.1 Admin

Admin can manage other user accounts and access everything in the FAIR Data Point.

2.1.2 User

User can create new catalogs and access existing catalogs where she was added.

2.2 Catalog Roles

2.2.1 Owner

Owner can update catalog details, add other users and upload new datasets.

2.2.2 Data Provider

Data Provider can create new data sets in the catalog.

2.3 Dataset Roles

2.3.1 Owner

Owner of the data set can update catalog details and add other users.

3

FAIR Data Point, Release 1.2.1

4 Chapter 2. Users and Roles

CHAPTER

THREE

COMPONENTS

The deployment of the FAIR Data Point consists of a couple of components. See the following image for the overview:

5

FAIR Data Point, Release 1.2.1

3.1 Triple Store

Every FAIR Data Point needs to store the semantic data somewhere. A triple Store is a place where the data is. It is
possible to configure different stores, see Triple Stores configuration for more details.

3.2 MongoDB

Besides semantic data, FDP needs information about user accounts and their roles. These data are stored in MongoDB
database.

3.3 FAIRDataPoint

FAIRDataPoint is distributed in Docker image fairdata/fairdatapoint. It is the core component which
handles all the business logic and operations with the semantic data. It also provides API for working with data in
different formats.

3.4 FAIRDataPoint-client

FDP client is distributed in Docker image fairdata/fairdatapoint-client. It provides the user interface
for humans. It works as a reverse proxy in front of the FAIR Data Point which decides whether the request is for
machine-readable data and passes it to the FAIRDataPoint or from a web browser in which case it serves the interface
for humans.

3.5 Reverse Proxy

In a production deployment, there is usually a reverse proxy that handles HTTPS certificates, so the connection to the
FAIR Data Point is secured. See production deployment to learn how to configure one.

6 Chapter 3. Components

https://www.mongodb.com

CHAPTER

FOUR

LOCAL DEPLOYMENT

FAIR Data Point is distributed in Docker images. For a simple local deployment, you need to run fairdatapoint,
fairdatapoint-client and mongo images. See the Components section to read more about what each image
is for.

Here is an example of the simplest Docker Compose configuration to run FDP.

docker-compose.yml

version: '3'
services:

fdp:
image: fairdata/fairdatapoint:1.2.1

fdp-client:
image: fairdata/fairdatapoint-client:1.2.1
ports:

- 80:80
environment:

- FDP_HOST=fdp

mongo:
image: mongo:4.0.12

Then you can run it using docker-compose up -d. It might take a while to start. You can run
docker-compose logs -f to follow the output log. Once you see a message, that the application started, the
FAIR Data Point should be working, and you can open http://localhost.

There are two default user accounts. See the Users and Roles section to read more about users and roles. The default
accounts are

User name Role Password
albert.einstein@example.com admin password
nikola.tesla@example.com user password

Danger: Using the default accounts is alright if you run FDP on your machine, but you should change them if
you want to run FDP publicly.

7

https://docs.docker.com/compose/
http://localhost
mailto:albert.einstein@example.com
mailto:nikola.tesla@example.com

FAIR Data Point, Release 1.2.1

4.1 Running locally on a different port

If you want to run the FAIR Data Point locally on a different port than the default 80, additional configuration is
necessary. First, we need to create a new file application.yml and set the instance URL to the actual URL we
want to use.

application.yml

instance:
url: http://localhost:8080

Then, we need to mount the application config into the FDP container and update the port which the FDP client runs
on.

docker-compose.yml

version: '3'
services:

fdp:
image: fairdata/fairdatapoint:1.2.1
volumes:

- ./application.yml:/fdp/application.yml:ro

fdp-client:
image: fairdata/fairdatapoint-client:1.2.1
ports:

- 8080:80
environment:

- FDP_HOST=fdp

mongo:
image: mongo:4.0.12

4.2 Persistence

We don’t have any data persistence with the previous configuration. Once we remove the containers, all the data will
be lost. To keep it, we need to configure MongoDB volume and persistent triple store.

4.2.1 MongoDB volume

We use MongoDB to store information about user accounts and access permissions. We can configure a volume so
that the data keep on our disk even if we delete MongoDB container.

We can also expose port 27017 so we can access MongoDB from our local computer using a client application like
Robo 3T.

Here is the updated docker-compose file:

docker-compose.yml

version: '3'
services:

(continues on next page)

8 Chapter 4. Local Deployment

https://docs.docker.com/storage/volumes/
https://robomongo.org

FAIR Data Point, Release 1.2.1

(continued from previous page)

fdp:
image: fairdata/fairdatapoint:1.2.1

fdp-client:
image: fairdata/fairdatapoint-client:1.2.1
ports:

- 80:80
environment:

- FDP_HOST=fdp

mongo:
image: mongo:4.0.12
ports:

- 27017:27017
volumes:

- ./mongo/data:/data/db

4.2.2 Persistent Repository

FAIR Data Point uses repositories to store the metadata. By default, it uses the in-memory store, which means that the
data is lost after the FDP is stopped.

In this example, we will configure Blazegraph as a triple store. See Triple Stores for other repository options.

If we don’t have it already, we need to create a new file application.yml. We will use this file to configure the
repository and mount it as a read-only volume to the fdp container. This file can be used for other configuration, see
Advanced Configuration for more details.

application.yml

... other configuration

repository:
type: 5
blazegraph:

url: http://blazegraph:8080/blazegraph

We now need to update our docker-compose.yml file, we add a new volume for the fdp and add blazegraph
service. We can also expose port 8080 for Blazegraph so we can access its user interface.

docker-compose.yml

version: '3'
services:

fdp:
image: fairdata/fairdatapoint:1.2.1
volumes:

- ./application.yml:/fdp/application.yml:ro

fdp-client:
image: fairdata/fairdatapoint-client:1.2.1
ports:

- 80:80

(continues on next page)

4.2. Persistence 9

FAIR Data Point, Release 1.2.1

(continued from previous page)

environment:
- FDP_HOST=fdp

mongo:
image: mongo:4.0.12
ports:

- 27017:27017
volumes:

- ./mongo/data:/data/db

blazegraph:
image: metaphacts/blazegraph-basic:2.2.0-20160908.003514-6
ports:

- 8080:8080
volumes:

- ./blazegraph:/blazegraph-data

10 Chapter 4. Local Deployment

CHAPTER

FIVE

PRODUCTION DEPLOYMENT

If you want to run the FAIR Data Point in production it is recommended to use HTTPS protocol with valid certificates.
You can easily configure FDP to run behind a reverse proxy which takes care of the certificates.

In this example, we will configure FDP to run on https://fdp.example.com. We will see how to configure
the reverse proxy in the same Docker Compose file. However, it is not necessary, and the proxy can be configured
elsewhere.

First of all, we need to generate the certificates on the server where we want to run the FDP. You can use Let’s
Encrypt and create the certificates with certbot. The certificates are generated in a standard location, e.g., /
etc/letsencrypt/live/fdp.example.com for fdp.example.com domain. We will mount the whole
letsencrypt folder to the reverse proxy container later so that it can use the certificates.

As a reverse proxy, we will use nginx. We need to prepare some configuration, so create a new folder called nginx
with the following structure and files:

nginx/
nginx.conf
sites-available

fdp.conf
sites-enabled

fdp.conf -> ../sites-available/fdp.conf

The file nginx.conf is the configuration of the whole nginx, and it includes all the files from sites-enabled
which contains configuration for individual servers (we can use one nginx, for example, to handle multiple servers on
different domains). All available configurations for different servers are in the sites-available, but only those
linked to sites-enabled are used.

Let’s see what should be the content of the configuration files.

nginx/nginx.conf

Main nginx config
user www-data www-data;
worker_processes 5;

events {
worker_connections 4096;

}

http {
Docker DNS resolver
We can then use docker container names as hostnames in other configurations
resolver 127.0.0.11 valid=10s;

(continues on next page)

11

https://letsencrypt.org
https://letsencrypt.org
https://certbot.eff.org
http://nginx.org/en/

FAIR Data Point, Release 1.2.1

(continued from previous page)

Include all the configurations files from sites-enabled
include /etc/nginx/sites-enabled/*.conf;

}

Then, we need to configure the FDP server.

nginx/sites-available/fdp.conf

server {
listen 443 ssl;

Generated certificates using certbot, we will mount these in docker-compose.yml
ssl_certificate /etc/letsencrypt/live/fdp.example.com/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/fdp.example.com/privkey.pem;

server_name fdp.example.com;

We pass all the request to the fdp-client container, we can use HTTP in the
→˓internal network

fdp-client_1 is the name of the client container in our configuration, we can
→˓use it as host

location / {
proxy_pass http://fdp-client_1;

}
}

We redirect all request from HTTP to HTTPS
server {

listen 80;
server_name fdp.example.com;
return 301 https://$host$request_uri;

}

Finally, we need to create a soft link from sites-enabled to sites-available for the FDP configuration.

$ cd nginx/sites-enabled && ln -s ../sites-available/fdp.conf

We have certificates generated and configuration for proxy ready. Now we need to add the proxy to our
docker-compose.yml file so we can run the whole FDP behind the proxy.

docker-compose.yml

version: '3'
services:

proxy:
image: nginx:1.17.3
ports:

- 80:80
- 443:443

volumes:
Mount the nginx folder with the configuration
- ./nginx:/etc/nginx:ro
Mount the letsencrypt certificates
- /etc/letsencrypt:/etc/letsencrypt:ro

fdp:
(continues on next page)

12 Chapter 5. Production Deployment

FAIR Data Point, Release 1.2.1

(continued from previous page)

image: fairdata/fairdatapoint:1.2.1
volumes:

- ./application.yml:/fdp/application.yml:ro

fdp-client:
image: fairdata/fairdatapoint-client:1.2.1
environment:

- FDP_HOST=fdp

mongo:
image: mongo:4.0.12
volumes:

- ./mongo/data:/data/db

blazegraph:
image: metaphacts/blazegraph-basic:2.2.0-20160908.003514-6
volumes:

- ./blazegraph:/blazegraph-data

The last thing to do is to update our application.yml file. We need to add instance URL so that FDP knows the
actual URL even if hidden behind the reverse proxy. And we also need to set a random JWT token for security.

application.yml

instance:
url: https://fdp.example.com

security:
jwt:

token:
secret-key: <random 128 characters string>

repository settings (can be changed to different repository)
repository:

type: 5
blazegraph:

url: http://blazegraph:8080/blazegraph

At this point, we should be able to run all the containers using docker-compose up -d and after everything
starts, we can access the FAIR Data Point at https://fdp.example.com. Of course, the domain you want to access the
FDP on must be configured to the server where it runs.

Danger: Don’t forget to change the default user accounts as soon as your FAIR Data Point becomes publicly
available.

Danger: Do not expose mongo port unless you secured the database with username and password.

13

https://fdp.example.com

FAIR Data Point, Release 1.2.1

14 Chapter 5. Production Deployment

CHAPTER

SIX

ADVANCED CONFIGURATION

6.1 Triple Stores

FDP uses InMemory triple store by default. In previous examples, there is Blazegraph used. However, you can choose
from 3 additional options.

List of possible triple stores:

1. In-Memory Store

2. Native Store

3. Allegro Graph Repository

4. GraphDB Repository

5. Blazegraph Repository

6.1.1 1. In-Memory Store

There is no need to configure additional properties to run FDP with In-Memory Store because it’s the default option.
If you want to explicitly type in configuration provided in application.yml, add following lines there:

application.yml

repository:
type: 1

6.1.2 2. Native Store

With this option, FDP will simply save the data to the file system. If you want to use the Native Store, make sure that
you have these lines in your application.yml file:

application.yml

repository:
type: 2
native:

dir: /tmp/fdp-store

where /tmp/fdp-store is a path to a location where you want to keep your data stored.

15

FAIR Data Point, Release 1.2.1

6.1.3 3. Allegro Graph

For running Allegro Graph, you need to first set up your Allegro Graph instance. For configuring the connection from
FDP, add these lines to your application.yml file:

application.yml

repository:
type: 3
agraph:

url: http://agraph:10035/repositories/fdp
username: user
password: password

URL, username and password should be configured according to your actual Allegro Graph setup.

6.1.4 4. GraphDB

For running GraphDB, you need to first set up your GraphDB instance and create the repository. For configuring the
connection from FDP, add these lines to your application.yml file:

application.yml

repository:
type: 4
graphDb:

url: http://graphdb:7200
repository: <repository-name>

URL and repository should be configured according to your actual GraphDB setup.

6.1.5 5. Blazegraph

For running Blazegraph, you need to first set up your Blazegraph instance. For configuring the connection from FDP,
add these lines to your application.yml file:

application.yml

repository:
type: 5
blazegraph:

url: http://blazegraph:8080/blazegraph
repository:

URL and repository should be configured according to your actual Blazegraph setup. Repository should be set
only if you don’t use the default one.

16 Chapter 6. Advanced Configuration

https://franz.com/agraph/allegrograph/
http://graphdb.ontotext.com
https://blazegraph.com/

FAIR Data Point, Release 1.2.1

6.2 Mongo DB

We store users, permissions, etc. in the MongoDB database. The default connection string is mongodb://
mongo:27017/fdp. If you want to modify it, add these lines to your application.yml file:

application.yml

spring:
data:

mongodb:
uri: mongodb://mongo:27017/fdp

The uri should be adjusted by your actual MongoDB setup.

6.3 Default attached metadata

There are several default values that are attached to each created metadata. If you want to modify it, add the lines
below to your application.yml file. The default values are listed below, too:

application.yml

metadataProperties:
publisherURI: http://localhost
publisherName: localhost
language: http://id.loc.gov/vocabulary/iso639-1/en
license: http://rdflicense.appspot.com/rdflicense/cc-by-nc-nd3.0
accessRightsDescription: This resource has no access restriction

metadataMetrics:
https://purl.org/fair-metrics/FM_F1A: https://www.ietf.org/rfc/rfc3986.txt
https://purl.org/fair-metrics/FM_A1.1: https://www.wikidata.org/wiki/Q8777

6.4 PID System

There are 2 basic PID systems - default PID system and purl.org PID system.

6.4.1 1. Default PID System

You don’t have to configure anything special to use the Default PID System. However, if you want to have an explicit
usage in configuration, add following lines to your application.yml file:

application.yml

pidSystem:
type: 1

6.2. Mongo DB 17

https://www.mongodb.com/

FAIR Data Point, Release 1.2.1

6.4.2 2. Purl.org PID System

If you want to use Purl.org PID System, you have to configure it in application.yml file - add the following
lines below and adjust the baseUrl.

application.yml

pidSystem:
type: 2
purl:

baseUrl: http://purl.org/YOUR-PURL-DOMAIN/fdp

6.5 Customizations

You can customize the look and feel of FDP Client using SCSS. There are three files you can mount to /src/scss/
custom. If there are any changes in these files, the styles will be regenerated when FDP Client starts.

6.5.1 Customization files

_variables.scss

A lot of values related to styles are defined as variables. The easiest way to customize the FDP Client is to define new
values for these variables. To do so, you create a file called _variables.scss where you define the values that
you want to change.

Here is an example of changing the primary color.

// _variables.scss

$color-primary: #087d63;

Have a look in src/scss/_variables.scss to see all the variables you can change.

_extra.scss

This file is loaded before all other styles. You can use it, for example, to define new styles or import fonts.

_overrides.scss

This file is loaded after all other styles. You can use it to override existing styles.

18 Chapter 6. Advanced Configuration

https://sass-lang.com
https://github.com/FAIRDataTeam/FAIRDataPoint-client/blob/develop/src/scss/_variables.scss

FAIR Data Point, Release 1.2.1

6.5.2 Example of setting a custom logo

To change the logo, you need to do three steps:

1. Create _variables.scss with correct logo file name and dimensions

2. Mount the new logo to the assets folder

3. Mount _variables.scss to SCSS custom folder

// _variables.scss

$header-logo-url: '/assets/my-logo.png'; // new logo file
$header-logo-width: 80px; // width of the new logo
$header-logo-height: 40px; // height of the new logo

docker-compose.yml

version: '3'
services:

fdp:
... FDP configuration

fdp-client:
... FDP Client configuration
volumes:
Mount new logo file to assets in the container
- ./my-logo.png:/usr/share/nginx/html/assets/my-logo.png:ro

Mount _variables.scss so that styles are regenerated
- ./_variables.scss:/src/scss/custom/_variables.scss:ro

6.6 Running FDP on a nested route

Sometimes, you might want to run FDP alongside other applications on the same domain. Here is an example of
running FDP on https://example.com/fairdatapoint. If you run FDP in this configuration, you have to
set PUBLIC_PATH ENV variable, in this example to /fairdatapoint. Also, don’t forget to set correct instance
URL in the application config.

docker-compose.yml

version: '3'
services:

fdp:
image: fairdata/fairdatapoint:1.2.1
volumes:

- ./application.yml:/fdp/application.yml:ro
... other volumes

fdp-client:
image: fairdata/fairdatapoint-client:1.2.1
ports:

- 80:80
environment:

- FDP_HOST=fdp
- PUBLIC_PATH=/fairdatapoint

6.6. Running FDP on a nested route 19

FAIR Data Point, Release 1.2.1

application.yml

instance:
url: https://example.com/fairdatapoint

Snippet for nginx configuration

server {
Configruation for the server, certificates, etc.

Define the location FDP runs on
location ~ /fairdatapoint(/.*)?$ {

rewrite /fairdatapoint(/.*) $1 break;
rewrite /fairdatapoint / break;
proxy_pass http://<client_host>;

}
}

When running on nested route, don’t forget to change paths to all custom assets referenced in SCSS files.

20 Chapter 6. Advanced Configuration

CHAPTER

SEVEN

USAGE

Here you can read how to use the metadata extension for OpenRefine to store FAIR data and create metadata in FAIR
Data Point.

7.1 About metadata extension

The metadata extension for OpenRefine promotes FAIRness of the data by its integration with FAIR Data Point. With
the extension you can easily FAIRify your data that you work on in directly in OpenRefine in two steps:

1. Store FAIR data in configured storage.

2. Create metadata in FAIR Data Point in selected FAIR Data Point.

It replaces the legacy project called FAIRifier.

7.2 Features

The extension provides the features only through FAIR Metadata extension menu located in top right corner above
data table (typically next to Wikidata and others).

7.2.1 Store FAIR data

1. Open the dialog for storing the data by clicking FAIR Metadata > Store data to FAIR storage

2. Select the desired storage (see Storages)

3. Select the desired format (the selection changes based on storage)

4. Press Preview (download) to download the file to verify the contents

5. Press Store to store the data in the storage

6. You will see the URL to the file which you can easy copy to clipboard by clicking a button

21

https://github.com/FAIRDataTeam/FAIRifier

FAIR Data Point, Release 1.2.1

7.2.2 Create metadata in FAIR Data Point

1. Open the dialog for creating the metadata by clicking FAIRMetadata > Create metadata in FAIR Data Point

2. Select pre-configured FAIR Data Point connection or select Custom FDP connection and fill information (if
allowed, see Settings)

3. Press Connect to connect to the selected FAIR Data Point

4. Select a catalog from available or create a new one

• For a new one, fill in the metadata form (see also the optional fields) and press Create catalog

5. Select a dataset from available or create a new one

• For a new one, fill in the metadata form (see also the optional fields) and press Create dataset

5. Create a new distribution

6. Fill in the metadata form (se also the optional fiels)

• For the download URL you can easily access Store FAIR data feature and field will be filled after storing
the data

7. Check your new distribution (and/or other layers) listed

22 Chapter 7. Usage

CHAPTER

EIGHT

SETUP

This part describes how to set up your own OpenRefine with the metadata extension and how to configure it according
to your needs.

8.1 Installation

There are two ways of using our metadata extension for OpenRefine. You can have installed OpenRefine and add
extension to it or use Docker with our prepared image.

8.1.1 Installed OpenRefine

This option requires you to have installed compatible version of OpenRefine, please check Compatibility. In case you
need to install OpenRefine first, visit their documentation.

• Get the desired version of the metadata extension from our GitHub releases page by downloading tgz or zip
archive, e.g., metadata-1.2.0-OpenRefine-3.3.zip.

• Extract the archive to extensions folder of your OpenRefine (see OpenRefine documentation).

unzip metadata-X.Y.Z-OpenRefine-X.Y.zip path/to/openrefine-X.Y/webapp/extensions

8.1.2 With Docker

If you want to use Docker, we provide a Docker image fairdata/openrefine-metadata-extension that combines the
extension with OpenRefine of supported version. It is of course possible to use volume for the data directory
(eventually data/extensions to include other extensions). All you need to have is Docker running and then:

docker run -p 3333:3333 -v /home/me/openrefine-data:/data:z fairdata/openrefine-
→˓metadata-extension

This will run the OpenRefine with metadata extension on port 3333 that will be exposed and mounts your folder
/home/me/openrefine-data as OpenRefine data folder. You should be able to open OpenRefine in browser
on localhost:3333. If there are some other extensions in /home/me/openrefine-data/extensions,
those should be loaded as well. For more information, see OpenRefine documentation.

For configuration files you need to mount /webapp/extensions/metadata/module/config, see Configu-
ration for more details.

23

https://github.com/OpenRefine/OpenRefine/wiki/Installation-Instructions
https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/releases
https://github.com/OpenRefine/OpenRefine/wiki/Installing-Extensions
https://hub.docker.com/r/fairdata/openrefine-metadata-extension
https://github.com/OpenRefine/OpenRefine/wiki/Installing-Extensions

FAIR Data Point, Release 1.2.1

8.2 Configuration

Configuration files of the metadata extension use the YAML (YAML Ain't Markup Language) format and are stored
in extensions/metadata/module/config directory of the used OpenRefine installment. The configuration
files are loaded when OpenRefine is started. Therefore, you are required to restart OpenRefine before changes in
configuration files take effect. We provide examples of the configuration files that you can (re)use.

8.2.1 Settings

Settings configuration file serves for generic configuration options that adjust behaviour of the extension. The structure
of the file is following:

• allowCustomFDP (boolean) = should be user allowed to enter custom FAIR Data Point URI (Uniform Re-
source Identifier), username, and password (or use only the pre-configured)

• metadata (map) = key-value specification of instance-wide pre-defined metadata, e.g., set license to
http://purl.org/NET/rdflicense/cc-by3.0 and that URI will be pre-set in all metadata forms
in field license (but can be overwritten by the user)

• fdpConnections (list) = list of pre-configured FAIR Data Point connections that users can use, each is object
with attributes:

– name (string) = custom name identifying the connection

– baseURI (string) = base URI of FAIR Data Point

– email (string) = email address identifying user of FAIR Data Point

– password (string) = password for authenticating the user of FAIR Data Point

– preselected (boolean, optional) = flag if should be pre-selected in the form (in case that more connec-
tions have this set to true, only first one is applied)

– metadata (map, optional) = similar to instance-wide but only for specific connection

8.2.2 Storages

Storages configuration file holds details about storages that are possible to use for Store FAIR data feature. In the file,
list of storage object is expected where each of them has:

• name (string) = custom name identifying the storage

• type (string) = one of the allowed types (others are ignored): ftp, virtuso, tripleStoreHTTP

• enabled (string) = flag if should be offered to the user

• username (string, optional) = username for authentication

• password (string, optional) = password for authentication

• host (string) = URI of the storage server

• directory (string) = directory or other location for storing the data

For FTP (File Transfer Protocol) and Virtuoso, directory should containt absolute path where files should be
stored. In case of triple stores, repository name is used to specify the target location.

24 Chapter 8. Setup

https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/tree/develop/src/main/resources/module/config

FAIR Data Point, Release 1.2.1

8.3 Compatibility

metadata extension OpenRefine FAIR Data Point
v1.2.0 3.3, 3.2 v1.2
v1.1.0 3.3, 3.2 v1.1
v1.0.0 3.3-beta, 3.2 v1.0

8.3. Compatibility 25

FAIR Data Point, Release 1.2.1

26 Chapter 8. Setup

CHAPTER

NINE

CONTRIBUTING

9.1 Development

Our projects are open source and you can contribute via GitHub (fork and pull request):

• https://github.com/FAIRDataTeam/FAIRDataPoint

• https://github.com/FAIRDataTeam/FAIRDataPoint-client

• https://github.com/FAIRDataTeam/OpenRefine-metadata-extension

27

https://github.com/FAIRDataTeam/FAIRDataPoint
https://github.com/FAIRDataTeam/FAIRDataPoint-client
https://github.com/FAIRDataTeam/OpenRefine-metadata-extension

FAIR Data Point, Release 1.2.1

28 Chapter 9. Contributing

CHAPTER

TEN

ROADMAP

29

	About FAIR Data Point
	Features
	Security

	Users and Roles
	FAIR Data Point Roles
	Catalog Roles
	Dataset Roles

	Components
	Triple Store
	MongoDB
	FAIRDataPoint
	FAIRDataPoint-client
	Reverse Proxy

	Local Deployment
	Running locally on a different port
	Persistence

	Production Deployment
	Advanced Configuration
	Triple Stores
	Mongo DB
	Default attached metadata
	PID System
	Customizations
	Running FDP on a nested route

	Usage
	About metadata extension
	Features

	Setup
	Installation
	Configuration
	Compatibility

	Contributing
	Development

	Roadmap

