

FAIR Data Point Reference Implementation Documentation

About

	About FAIR Data Point
	Features

	Security

	Users and Roles
	FAIR Data Point Roles

	Catalog Roles

	Dataset Roles

	Components
	Triple Store

	MongoDB

	FAIRDataPoint

	FAIRDataPoint-client

	Reverse Proxy

Deployment

	Local Deployment
	Running locally on a different port

	Persistence

	Production Deployment

	Advanced Configuration
	Triple Stores

	Mongo DB

	Default attached metadata

	FDP Index

	Customizations

	Running FDP on a nested route

Usage

	Usage
	Resource definitions

	Shapes

	API Usage
	Obtaining an API token

	Interacting with metadata

	API endpoint listing

OpenRefine Extension

	Usage
	About metadata extension

	Features

	Setup
	Installation

	Configuration

	Compatibility

Development

	Contributing
	Development

	Changelog
	Overview

	Detailed changelog

About FAIR Data Point

FAIRDataPoint is a REST API and Web Client for creating, storing, and serving
FAIR metadata. The metadata contents are generated
semi-automatically according to the FAIR Data Point software
specification [https://github.com/FAIRDataTeam/FAIRDataPoint-Spec]
document.

Features

	Store catalogs, datasets, and distributions

	Manage users

	Manage access rights to your catalogs, datasets, and distributions

Security

We have two levels of accessibility in FDP. All resources (e.g., catalogs, datasets,…) are publicly accessible. You don’t need to be logged in to browse them. If you want to upload your own resources, you need to be logged in. To get an account, you need to contact an administrator of the FDP. By default, all uploaded resources are publicly accessible by anyone. But if you want to allow someone to manage your resources (edit/delete), you need to allow it in the resource settings.

We have two types of roles in FDP - an administrator and a user. The administrator is allowed to manage users and all resources. The user can manage just the resources which he owns.

Users and Roles

There are different roles for different levels in the FAIR Data Point.

FAIR Data Point Roles

Admin

Admin can manage other user accounts and access everything in the FAIR Data Point.

User

User can create new catalogs and access existing catalogs where she was added.

Catalog Roles

Owner

Owner can update catalog details, add other users and upload new datasets.

Data Provider

Data Provider can create new data sets in the catalog.

Dataset Roles

Owner

Owner of the data set can update catalog details and add other users.

Components

The deployment of the FAIR Data Point consists of a couple of components. See the following image for the overview:

[image: Structure Overview]

Triple Store

Every FAIR Data Point needs to store the semantic data somewhere. A triple Store is a place where the data is. It is possible to configure different stores, see Triple Stores configuration for more details.

MongoDB

Besides semantic data, FDP needs information about user accounts and their roles. These data are stored in MongoDB [https://www.mongodb.com] database.

FAIRDataPoint

FAIRDataPoint is distributed in Docker image fairdata/fairdatapoint. It is the core component which handles all the business logic and operations with the semantic data. It also provides API for working with data in different formats.

FAIRDataPoint-client

FDP client is distributed in Docker image fairdata/fairdatapoint-client. It provides the user interface for humans. It works as a reverse proxy in front of the FAIR Data Point which decides whether the request is for machine-readable data and passes it to the FAIRDataPoint or from a web browser in which case it serves the interface for humans.

Reverse Proxy

In a production deployment, there is usually a reverse proxy that handles HTTPS certificates, so the connection to the FAIR Data Point is secured. See production deployment to learn how to configure one.

Local Deployment

FAIR Data Point is distributed in Docker images. For a simple local deployment, you need to run fairdatapoint, fairdatapoint-client and mongo images. See the Components section to read more about what each image is for.

Here is an example of the simplest Docker Compose [https://docs.docker.com/compose/] configuration to run FDP.

 # docker-compose.yml

 version: '3'
 services:

 fdp:

	<<<<<<< HEAD
	
image: fairdata/fairdatapoint:1.13

	fdp-client:
	image: fairdata/fairdatapoint-client:1.13

	fdp-client:
	image: fairdata/fairdatapoint-client:1.14

	>>>>>>> 9847a0d (Release 1.14.0)
	

	ports:
	
	80:80

	environment:
	
	FDP_HOST=fdp

	mongo:
	image: mongo:4.0.12

Then you can run it using docker-compose up -d. It might take a while to start. You can run docker-compose logs -f to follow the output log. Once you see a message, that the application started, the FAIR Data Point should be working, and you can open http://localhost.

There are two default user accounts. See the Users and Roles section to read more about users and roles. The default accounts are

	User name

	Role

	Password

	albert.einstein@example.com

	admin

	password

	nikola.tesla@example.com

	user

	password

Danger

Using the default accounts is alright if you run FDP on your machine, but you should change them if you want to run FDP publicly.

Running locally on a different port

If you want to run the FAIR Data Point locally on a different port than the default 80, additional configuration is necessary. First, we need to create a new file application.yml and set the client URL to the actual URL we want to use.

application.yml

instance:
 clientUrl: http://localhost:8080

Then, we need to mount the application config into the FDP container and update the port which the FDP client runs on.

 # docker-compose.yml

 version: '3'
 services:

 fdp:

	<<<<<<< HEAD
	image: fairdata/fairdatapoint:1.13

	volumes:
	
	./application.yml:/fdp/application.yml:ro

fdp-client:

	<<<<<<< HEAD
	image: fairdata/fairdatapoint-client:1.13

	ports:
	
	8080:80

	environment:
	
	FDP_HOST=fdp

	mongo:
	image: mongo:4.0.12

Persistence

We don’t have any data persistence with the previous configuration. Once we remove the containers, all the data will be lost. To keep it, we need to configure MongoDB volume and persistent triple store.

MongoDB volume

We use MongoDB to store information about user accounts and access permissions. We can configure a volume [https://docs.docker.com/storage/volumes/] so that the data keep on our disk even if we delete MongoDB container.

We can also expose port 27017 so we can access MongoDB from our local computer using a client application like Robo 3T [https://robomongo.org].

Here is the updated docker-compose file:

 # docker-compose.yml

 version: '3'
 services:

 fdp:
 image: fairdata/fairdatapoint:1.14

 fdp-client:
 image: fairdata/fairdatapoint-client:1.14
 ports:
 - 80:80
 environment:
 - FDP_HOST=fdp

 mongo:
 image: mongo:4.0.12
 ports:
 - 27017:27017
 volumes:
 - ./mongo/data:/data/db

Persistent Repository

FAIR Data Point uses repositories to store the metadata. By default, it uses the in-memory store, which means that the data is lost after the FDP is stopped.

In this example, we will configure Blazegraph as a triple store. See Triple Stores for other repository options.

If we don’t have it already, we need to create a new file application.yml. We will use this file to configure the repository and mount it as a read-only volume to the fdp container. This file can be used for other configuration, see Advanced Configuration for more details.

application.yml

... other configuration

repository:
 type: 5
 blazegraph:
 url: http://blazegraph:8080/blazegraph

We now need to update our docker-compose.yml file, we add a new volume for the fdp and add blazegraph service. We can also expose port 8080 for Blazegraph so we can access its user interface.

 # docker-compose.yml

 version: '3'
 services:

 fdp:
 image: fairdata/fairdatapoint:1.14
 volumes:
 - ./application.yml:/fdp/application.yml:ro

 fdp-client:
 image: fairdata/fairdatapoint-client:1.14
 ports:
 - 80:80
 environment:
 - FDP_HOST=fdp

 mongo:
 image: mongo:4.0.12
 ports:
 - 27017:27017
 volumes:
 - ./mongo/data:/data/db

 blazegraph:
 image: metaphacts/blazegraph-basic:2.2.0-20160908.003514-6
 ports:
 - 8080:8080
 volumes:
 - ./blazegraph:/blazegraph-data

Production Deployment

If you want to run the FAIR Data Point in production it is recommended to use HTTPS protocol with valid certificates. You can easily configure FDP to run behind a reverse proxy which takes care of the certificates.

In this example, we will configure FDP to run on https://fdp.example.com. We will see how to configure the reverse proxy in the same Docker Compose file. However, it is not necessary, and the proxy can be configured elsewhere.

First of all, we need to generate the certificates on the server where we want to run the FDP. You can use Let’s Encrypt [https://letsencrypt.org] and create the certificates with certbot [https://certbot.eff.org]. The certificates are generated in a standard location, e.g., /etc/letsencrypt/live/fdp.example.com for fdp.example.com domain. We will mount the whole letsencrypt folder to the reverse proxy container later so that it can use the certificates.

As a reverse proxy, we will use nginx [http://nginx.org/en/]. We need to prepare some configuration, so create a new folder called nginx with the following structure and files:

nginx/
├ nginx.conf
├ sites-available
│ └ fdp.conf
└ sites-enabled
 └ fdp.conf -> ../sites-available/fdp.conf

The file nginx.conf is the configuration of the whole nginx, and it includes all the files from sites-enabled which contains configuration for individual servers (we can use one nginx, for example, to handle multiple servers on different domains). All available configurations for different servers are in the sites-available, but only those linked to sites-enabled are used.

Let’s see what should be the content of the configuration files.

nginx/nginx.conf

Main nginx config
user www-data www-data;
worker_processes 5;

events {
 worker_connections 4096;
}

http {
 # Docker DNS resolver
 # We can then use docker container names as hostnames in other configurations
 resolver 127.0.0.11 valid=10s;

 # Include all the configurations files from sites-enabled
 include /etc/nginx/sites-enabled/*.conf;
}

Then, we need to configure the FDP server.

nginx/sites-available/fdp.conf

server {
 listen 443 ssl;

 # Generated certificates using certbot, we will mount these in docker-compose.yml
 ssl_certificate /etc/letsencrypt/live/fdp.example.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/fdp.example.com/privkey.pem;

 server_name fdp.example.com;

 # We pass all the request to the fdp-client container, we can use HTTP in the internal network
 # fdp-client_1 is the name of the client container in our configuration, we can use it as host
 location / {
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-Proto $scheme;
 proxy_pass_request_headers on;
 proxy_pass http://fdp-client_1;
 }
}

We redirect all request from HTTP to HTTPS
server {
 listen 80;
 server_name fdp.example.com;
 return 301 https://$host$request_uri;
}

Finally, we need to create a soft link from sites-enabled to sites-available for the FDP configuration.

$ cd nginx/sites-enabled && ln -s ../sites-available/fdp.conf

We have certificates generated and configuration for proxy ready. Now we need to add the proxy to our docker-compose.yml file so we can run the whole FDP behind the proxy.

 # docker-compose.yml

 version: '3'
 services:
 proxy:
 image: nginx:1.17.3
 ports:
 - 80:80
 - 443:443
 volumes:
 # Mount the nginx folder with the configuration
 - ./nginx:/etc/nginx:ro
 # Mount the letsencrypt certificates
 - /etc/letsencrypt:/etc/letsencrypt:ro

 fdp:
 image: fairdata/fairdatapoint:1.14
 volumes:
 - ./application.yml:/fdp/application.yml:ro

 fdp-client:
 image: fairdata/fairdatapoint-client:1.14
 environment:
 - FDP_HOST=fdp

 mongo:
 image: mongo:4.0.12
 ports:
 - "127.0.0.1:27017:27017"
 volumes:
 - ./mongo/data:/data/db

 blazegraph:
 image: metaphacts/blazegraph-basic:2.2.0-20160908.003514-6
 volumes:
 - ./blazegraph:/blazegraph-data

The last thing to do is to update our application.yml file. We need to add clientUrl so that FDP knows the actual URL even if hidden behind the reverse proxy. It’s a good practice to set up a persistent URL for the metadata too. We recommend using https://purl.org. If you don’t specify persistentUrl, the clientUrl will be used instead. And we also need to set a random JWT token for security.

application.yml

instance:
 clientUrl: https://fdp.example.com
 persistentUrl: https://purl.org/fairdatapoint/example

security:
 jwt:
 token:
 secret-key: <random 128 characters string>

repository settings (can be changed to different repository)
repository:
 type: 5
 blazegraph:
 url: http://blazegraph:8080/blazegraph

At this point, we should be able to run all the containers using docker-compose up -d and after everything starts, we can access the FAIR Data Point at https://fdp.example.com. Of course, the domain you want to access the FDP on must be configured to the server where it runs.

Danger

Don’t forget to change the default user accounts as soon as your FAIR Data Point becomes publicly available.

Danger

Do not expose mongo port unless you secured the database with username and password.

Warning

In order to improve findability of itself and its content, the FAIR Data Point has a built-in feature that registers its URL into our server and pings it once a week. This feature facilitates the indexing of the metadata of each registered and active FAIR Data Point. If you do not want your FAIR Data Point to be included in this registry, add these lines to your application configuration:

application.yml

ping:
 enabled: false

Advanced Configuration

Triple Stores

FDP uses InMemory triple store by default. In previous examples, there is Blazegraph used. However, you can choose from 3 additional options.

List of possible triple stores:

	In-Memory Store

	Native Store

	Allegro Graph Repository

	GraphDB Repository

	Blazegraph Repository

1. In-Memory Store

There is no need to configure additional properties to run FDP with In-Memory Store because it’s the default option. If you want to explicitly type in configuration provided in application.yml, add following lines there:

application.yml

repository:
 type: 1

2. Native Store

With this option, FDP will simply save the data to the file system. If you want to use the Native Store, make sure that you have these lines in your application.yml file:

application.yml

repository:
 type: 2
 native:
 dir: /tmp/fdp-store

where /tmp/fdp-store is a path to a location where you want to keep your data stored.

3. Allegro Graph

For running Allegro Graph [https://franz.com/agraph/allegrograph/], you need to first set up your Allegro Graph instance. For configuring the connection from FDP, add these lines to your application.yml file:

application.yml

repository:
 type: 3
 agraph:
 url: http://agraph:10035/repositories/fdp
 username: user
 password: password

URL, username and password should be configured according to your actual Allegro Graph setup.

4. GraphDB

For running GraphDB [http://graphdb.ontotext.com], you need to first set up your GraphDB instance and create the repository. For configuring the connection from FDP, add these lines to your application.yml file:

application.yml

repository:
 type: 4
 graphDb:
 url: http://graphdb:7200
 repository: <repository-name>

URL and repository should be configured according to your actual GraphDB setup.

5. Blazegraph

For running Blazegraph [https://blazegraph.com/], you need to first set up your Blazegraph instance. For configuring the connection from FDP, add these lines to your application.yml file:

application.yml

repository:
 type: 5
 blazegraph:
 url: http://blazegraph:8080/blazegraph
 repository:

URL and repository should be configured according to your actual Blazegraph setup. Repository should be set only if you don’t use the default one.

Mongo DB

We store users, permissions, etc. in the MongoDB database [https://www.mongodb.com/]. The default connection string is mongodb://mongo:27017/fdp. If you want to modify it, add these lines to your application.yml file:

application.yml

spring:
 data:
 mongodb:
 uri: mongodb://mongo:27017/fdp

The uri should be adjusted by your actual MongoDB setup.

Default attached metadata

There are several default values that are attached to each created metadata. If you want to modify it, add the lines below to your application.yml file. The default values are listed below, too:

application.yml

metadataProperties:
 language: http://id.loc.gov/vocabulary/iso639-1/en
 license: http://rdflicense.appspot.com/rdflicense/cc-by-nc-nd3.0
 accessRightsDescription: This resource has no access restriction

metadataMetrics:
 https://purl.org/fair-metrics/FM_F1A: https://www.ietf.org/rfc/rfc3986.txt
 https://purl.org/fair-metrics/FM_A1.1: https://www.wikidata.org/wiki/Q8777

FDP Index

You can turn your FAIR Data Point instance into a FDP Index that can be contacted by other FDPs and harvests metadata from them.

Hosting FDP Index

To enable FDP Index mode on your FDP server, just simply adjust your application.yml file:

application.yml

instance:
 index: true

Then for the FDP client, you need to use fairdata/fairdatapoint-index-client Docker image for browsing indexed FDPs and searching harvested metadata. In case you want to use your deployment both as FDP and FDP Index, you can deploy both FDP and FDP Index client applications. The configuration of both clients are identical.

 # docker-compose.yml

 version: '3'
 services:

 # ...

 index_client:
 image: fairdata/fairdatapoint-index-client:1.14
 restart: always
 # ...

Connecting to FDP Index

By default, FDPs use https://home.fairdatapoint.org as their primary FDP Index that they ping every 7 days. You can adjust that in your application.yml file if needed:

application.yml

ping:
 endpoint: https://my-index.example.com
 interval: 86400000 # milliseconds

You can also set multiple endpoints if needed:

application.yml

ping:
 endpoint: >
 https://my-index1.example.com
 https://my-index2.example.com
 https://home.fairdatapoint.org

FDP Index behind proxy

FDP Index uses IP-based rate limits to avoid excessive communication caused by bots or misconfigured FDPs. If the FDP Index is deployed behind a proxy, it must correctly set header, e.g., X-Forwarded-For. Furthermore, you need to add this to application.yml:

application.yml

server:
 forward-headers-strategy: NATIVE

There may be differences based on you specific deployment. You should check in logs, which IP address is used when ping is received.

Customizations

You can customize the look and feel of FDP Client using
SCSS [https://sass-lang.com]. There are three files you can mount to
/src/scss/custom. If there are any changes in these files, the
styles will be regenerated when FDP Client starts.

Customization files

_variables.scss

A lot of values related to styles are defined as variables. The easiest
way to customize the FDP Client is to define new values for these
variables. To do so, you create a file called _variables.scss where
you define the values that you want to change.

Here is an example of changing the primary color.

// _variables.scss

$color-primary: #087d63;

Have a look in src/scss/_variables.scss [https://github.com/FAIRDataTeam/FAIRDataPoint-client/blob/develop/src/scss/_variables.scss]
to see all the variables you can change.

_extra.scss

This file is loaded before all other styles. You can use it, for
example, to define new styles or import fonts.

_overrides.scss

This file is loaded after all other styles. You can use it to override
existing styles.

Example of setting a custom logo

To change the logo, you need to do three steps:

	Create _variables.scss with correct logo file name and dimensions

	Mount the new logo to the assets folder

	Mount _variables.scss to SCSS custom folder

// _variables.scss

$header-logo-url: '/assets/my-logo.png'; // new logo file
$header-logo-width: 80px; // width of the new logo
$header-logo-height: 40px; // height of the new logo

docker-compose.yml

version: '3'
services:
 fdp:
 # ... FDP configuration

 fdp-client:
 # ... FDP Client configuration
 volumes:
 # Mount new logo file to assets in the container
 - ./my-logo.png:/usr/share/nginx/html/assets/my-logo.png:ro

 # Mount _variables.scss so that styles are regenerated
 - ./_variables.scss:/src/scss/custom/_variables.scss:ro

Running FDP on a nested route

Sometimes, you might want to run FDP alongside other applications on the
same domain. Here is an example of running FDP on
https://example.com/fairdatapoint. If you run FDP in this configuration, you
have to set PUBLIC_PATH ENV variable, in this example to
/fairdatapoint. Also, don’t forget to set correct client URL in the application config.

 # docker-compose.yml

 version: '3'
 services:
 fdp:
 image: fairdata/fairdatapoint:1.14
 volumes:
 - ./application.yml:/fdp/application.yml:ro
 # ... other volumes

 fdp-client:
 image: fairdata/fairdatapoint-client:1.14
 ports:
 - 80:80
 environment:
 - FDP_HOST=fdp
 - PUBLIC_PATH=/fairdatapoint

application.yml

instance:
 clientUrl: https://example.com/fairdatapoint

Snippet for nginx configuration

server {
 # Configruation for the server, certificates, etc.

 # Define the location FDP runs on
 location ~ /fairdatapoint(/.*)?$ {
 rewrite /fairdatapoint(/.*) $1 break;
 rewrite /fairdatapoint / break;
 proxy_pass http://<client_host>;
 }
}

Hint

When running on nested route, don’t forget to change paths to all
custom assets referenced in SCSS files.

Usage

Resource definitions

The FAIR Data Point reference implementations introduces the concept of Resource Definitions. A resource definition captures housekeeping data about a metadata resource.

Resource definitions can be accessed from the reference implementation user interface, in the dashboard of an admin user. Here the resource definitions can be managed.

Managing resource definitions

Resource definitions can be created, modified, or deleted.

Creating resource definitions

When creating a new resource definition, the user interface presents you a form where a resource can be defined through a number of properties.

Name defines the human readable name for a resource definition. This name is used in the admin dashboard to identify the definitions, and does not affect a definition on the functional level. For example, for the default dcat:Dataset resource, the human readable name would be "Dataset".

URL Prefix defines the URL path for a resource. This context path should be a unique identifier, unique in the scope of the other resource defined within the FAIR Data Point instance. For example, for the dcat:Dataset resource the prefix is dataset.

Target Class URIs links the shape definitions to a resource definition. In the current implementation, each shape that should be applied to the resource must be listed here. The expected URI value must match the sh:targetClass value of the shape definition. A common example is to list the dcat:Resource shape target class along with the specific subclass for the resource, like dcat:Dataset.

Children defines child resources, if any. This applies when the resource acts as a parent resource for other types of resources. Children are defined by the following properties to provide directives for both the server and the client side.

	Child Resource links to the child’s resource definition. The child resource must be defined beforehand.

	Child Relation URI defines the predicate IRI that links the parent to the child on the metadata instance level. A common example is the link from a dcat:Dataset to a dcat:Distribution; these resources are linked by the dcat:distribution predicate.

	Child List View Title defines a literal value to be displayed as a section header for the child resources in the user interface.

	Child List View Tags URI defines the predicate IRI for values that are displayed in the user interface whenever the child resources are listed. A common example is dcat:theme for dcat:Dataset resources.

	Child List View Metadata defines predicate IRIs for values that are listed in the child resource summary.

External links defines predicate IRIs and literal values to be displayed in the user interface for primary interaction with a resource. A common example is for the dcat:Distribution resource, dcat:accessURL is mapped to an Access URL literal, and displayed prominently in the user interface.

Modifying resource definitions

When modifying a resource definition, not all properties are writable. Some properties are write-protected to ensure the internal consistency of the system.

The URL Prefix and the Target Class URIs are not writable.

The other properties, like child resources and external links are writable, and can be expanded or modified after the initial creation of the resource definition.

Deleting resource definitions

Deleting a resource definition should be used with caution. Existing metadata instances are no longer accessible after the resource definition is deleted. This includes child resources, if those are not linked to other resources.

Shapes

The FAIR Data Point reference implementation uses SHACL [https://www.w3.org/TR/shacl] to add validation constraints to the metadata model.

Creating a new shape

A typical resource shape contains the following key elements:

	sh:targetClass to indicate the type of resource the shape applies to

	sh:property for each resource property

	sh:path defines the predicate IRI

	sh:nodeKind/sh:datatype defines the object type

	sh:minCount/sh:maxCount defines the property cardinality

@prefix sh: <http://www.w3.org/ns/shacl#> .
@prefix dash: <http://datashapes.org/dash#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix ex: <http://example.com/> .

:MyResourceShape a sh:NodeShape ;
 sh:targetClass ex:MyResourceType ;
 sh:property [
 sh:path ex:value ;
 sh:nodeKind sh:Literal ;
 sh:minCount 1 ;
 sh:maxCount 2 ;
] .

User interface directives

The DASH [http://datashapes.org/dash] vocabulary introduces extensions to the core SHACL model. One of the extensions is focused on providing user interface hints for shape properties. Introducing or removing a dash:viewer or dash:editor property to a sh:PropertyShape instance influences how the user interface displays the property value.

sh:property [
 sh:path ex:value ;
 sh:nodeKind sh:Literal ;
 dash:viewer dash:LiteralViewer ;
 dash:editor dash:TextFieldEditor ;
]

By adding a dash:viewer statement, the user interface is instructed to show the property value when the resource metadata is displayed. Removing a dash:viewer statement will instruct the user interface will not render the property value at all. The value will still be present in the metadata model. The supported set of viewers:

	sh:LabelViewer

	sh:URIViewer

By adding a dash:editor statement, the editor form in the user interface will show an edit field for the property. Removing a dash:editor statement will prevent the property from being edited. This could be intended behaviour for properties that are generated server side. The supported set of editors:

	sh:TextFieldEditor

	sh:TextAreaEditor

	sh:URIEditor

	sh:DatePickerEditor

Extending an existing shape

Extending an existing shape can be achieved by targeting the same sh:targetClass. For example, to extend the existing dcat:Dataset shape, an extension shape could look like the following:

:MyExtension a sh:NodeShape ;
 sh:targetClass dcat:Dataset ;
 sh:property [
 sh:path <http://example.com/vocab#myProperty> ;
 sh:nodeKind sh:Literal ;
 sh:minCount 1 ;
] .

Limitations

	The current implementation does not provide proper support for overriding properties when an existing resource is extended

	The set of supported dash:viewer and dash:editor types does not cover the full range as specified in the DASH specs.

API Usage

The FAIR Data Point exposes API endpoints that allow consumers to interact with the metadata. Some of the endpoints are available for all users, while others require an API token for authorization.

Obtaining an API token

In order to obtain an API token, you invoke the /tokens endpoint with your user credentials.

curl -X POST -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d '{ "email": "user@example.com", "password": "secret" }' \
 https://fdp.example.com/tokens

A successful call will return a JSON object with a token.

{ "token": "efIobn394nvJJFJ30..." }

Issueing a request with the authorization token

Subsequent requests should use this token in the Authorization header. The authorization type is a Bearer [https://tools.ietf.org/html/rfc6750] token.

curl -H "Authorization: Bearer efIobn394nvJJFJ30..." \
 -H "Accept: application/json" https://fdp.example.com/users

Interacting with metadata

The metadata layers as defined by the Resource definitions are exposed through their respective endpoints. The general approach is that each layer, defined by its prefix, supports a number of read and write HTTP methods.

	Method

	URL pattern

	Functionality

	GET

	/${prefix}/${uuid}

	Retrieving metadata

	POST

	/${prefix}

	Creating metadata

	PUT

	/${prefix}/${uuid}

	Update metadata

Retrieving metadata

Retrieving metadata is open for GET requests without authorization. In the following example, we retrieve a Dataset resource by issuing a GET request to the /dataset prefix followed by its identifier (a UUID).

curl -H "Accept: text/turtle" https://fdp.example.com/dataset/58d7fbde-6c16-483e-b152-0f3ced131ca9

Creating metadata

New metadata can be created by POST-ing the content to the appropriate endpoint. First we will create a file called metadata.ttl to store our new metadata.

@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<> a dcat:Dataset ;
 dct:title "test" ;
 dct:hasVersion "1.0" ;
 dct:publisher [a foaf:Agent ; foaf:name "Example User"] ;
 dcat:theme <http://www.wikidata.org/entity/Q14944328> ;
 dct:isPartOf <https://fdp.example.com/catalog/5f4a32c5-1f26-4657-9240-fc7ede7f1ce5> .

This metadata can be created by the following POST request.

curl -H "Authorization: Bearer efIobn394nvJJFJ30..." \
 -H "Content-Type: text/turtle" \
 -d @metadata.ttl https://fdp.example.com/dataset

When created, the metadata is initially in a DRAFT state. To publish the metadata using the API you can issue the following PUT request to transistion the metadata from the DRAFT state to the PUBLISHED state.

curl -X PUT -H "Authorization: Bearer efIobn394nvJJFJ30..." \
 -H "Accept: application/json" \
 -H "Content-Type: application/json" \
 -d '{ "current": "PUBLISHED" }' \
 https://fdp.example.com/dataset/79508287-a2a7-4ae2-95b3-3f595e3088cc/meta/state

Update metadata

Existing metadata can be updated by issuing a PUT request with the request body being the updated metadata.

curl -X PUT -H "Authorization: Bearer efIobn394nvJJFJ30..." \
 -H "Content-Type: text/turtle" \
 -d @metadata.ttl https://fdp.example.com/dataset/79508287-a2a7-4ae2-95b3-3f595e3088cc

API endpoint listing

The available APIs are documented using OpenAPI [https://www.openapis.org/]. In the /swagger-ui.html endpoint the APIs are visualized through Swagger UI [https://swagger.io/tools/swagger-ui/].

Usage

Here you can read how to use the metadata extension for OpenRefine to store FAIR data and create metadata in FAIR Data Point.

About metadata extension

The metadata extension for OpenRefine promotes FAIRness of the data by its integration with FAIR Data Point. With the extension you can easily FAIRify your data that you work on in directly in OpenRefine in two steps:

	Store FAIR data in configured storage.

	Create metadata in FAIR Data Point in selected FAIR Data Point.

It replaces the legacy project called FAIRifier [https://github.com/FAIRDataTeam/FAIRifier].

Features

The extension provides the features only through FAIR Metadata extension menu located in top right corner above data table (typically next to Wikidata and others).

Store FAIR data

	Open the dialog for storing the data by clicking FAIR Metadata > Store data to FAIR storage

	Select the desired storage (see Storages)

	Select the desired format (the selection changes based on storage)

	Press Preview (download) to download the file to verify the contents

	Press Store to store the data in the storage

	You will see the URL to the file which you can easy copy to clipboard by clicking a button

Create metadata in FAIR Data Point

	Open the dialog for creating the metadata by clicking FAIRMetadata > Create metadata in FAIR Data Point

	Select pre-configured FAIR Data Point connection or select Custom FDP connection and fill information (if allowed, see Settings)

	Press Connect to connect to the selected FAIR Data Point

	Select a catalog from available or create a new one

	For a new one, fill in the metadata form (see also the optional fields) and press Create catalog

	Select a dataset from available or create a new one

	For a new one, fill in the metadata form (see also the optional fields) and press Create dataset

	Create a new distribution

	Fill in the metadata form (se also the optional fiels)

	For the download URL you can easily access Store FAIR data feature and field will be filled after storing the data

	Check your new distribution (and/or other layers) listed

Setup

This part describes how to set up your own OpenRefine with the metadata extension and how to configure it according to your needs.

Installation

There are two ways of using our metadata extension for OpenRefine. You can have installed OpenRefine and add extension to it or use Docker with our prepared image.

Installed OpenRefine

This option requires you to have installed compatible version of OpenRefine, please check Compatibility. In case you need to install OpenRefine first, visit their documentation [https://github.com/OpenRefine/OpenRefine/wiki/Installation-Instructions].

	Get the desired version of the metadata extension from our GitHub releases page [https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/releases] by downloading tgz or zip archive, e.g., metadata-X.Y.Z-OpenRefine-X.Y.zip.

	Extract the archive to extensions folder of your OpenRefine (see OpenRefine documentation [https://github.com/OpenRefine/OpenRefine/wiki/Installing-Extensions]).

unzip metadata-X.Y.Z-OpenRefine-X.Y.zip path/to/openrefine-X.Y/webapp/extensions

With Docker

If you want to use Docker, we provide a Docker image fairdata/openrefine-metadata-extension [https://hub.docker.com/r/fairdata/openrefine-metadata-extension] that combines the extension with OpenRefine of supported version. It is of course possible to use volume for the data directory (eventually data/extensions to include other extensions). All you need to have is Docker running and then:

docker run -p 3333:3333 -v /home/me/openrefine-data:/data:z fairdata/openrefine-metadata-extension

This will run the OpenRefine with metadata extension on port 3333 that will be exposed and mounts your folder /home/me/openrefine-data as OpenRefine data folder. You should be able to open OpenRefine in browser on localhost:3333. If there are some other extensions in /home/me/openrefine-data/extensions, those should be loaded as well. For more information, see OpenRefine documentation [https://github.com/OpenRefine/OpenRefine/wiki/Installing-Extensions].

For configuration files you need to mount /webapp/extensions/metadata/module/config, see Configuration for more details.

Configuration

Configuration files of the metadata extension use the YAML format and are stored in extensions/metadata/module/config directory of the used OpenRefine installment. The configuration files are loaded when OpenRefine is started. Therefore, you are required to restart OpenRefine before changes in configuration files take effect. We provide examples [https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/tree/develop/src/main/resources/module/config] of the configuration files that you can (re)use.

Settings

Settings configuration file serves for generic configuration options that adjust behaviour of the extension. The structure of the file is following:

	allowCustomFDP (boolean) = should be user allowed to enter custom FAIR Data Point URI, username, and password (or use only the pre-configured)

	metadata (map) = key-value specification of instance-wide pre-defined metadata, e.g., set license to http://purl.org/NET/rdflicense/cc-by3.0 and that URI will be pre-set in all metadata forms in field license (but can be overwritten by the user)

	fdpConnections (list) = list of pre-configured FAIR Data Point connections that users can use, each is object with attributes:

	name (string) = custom name identifying the connection

	baseURI (string) = base URI of FAIR Data Point

	email (string) = email address identifying user of FAIR Data Point

	password (string) = password for authenticating the user of FAIR Data Point

	preselected (boolean, optional) = flag if should be pre-selected in the form (in case that more connections have this set to true, only first one is applied)

	metadata (map, optional) = similar to instance-wide but only for specific connection

For more information and further configuration options, see settings example [https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/blob/master/src/main/resources/module/config/settings.example.yaml].

Storages

Storages configuration file holds details about storages that are possible to use for Store FAIR data feature. In the file, list of storage object is expected where each of them has:

	name (string) = custom name identifying the storage

	type (string) = one of the allowed types (others are ignored): ftp, virtuso, tripleStoreHTTP

	details (object) = configuration related to specific type of storage (see storages example [https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/blob/master/src/main/resources/module/config/storages.example.yaml])

For FTP and Virtuoso, directory should containt absolute path where files should be stored. In case of triple stores, repository name is used to specify the target location.

Compatibility

Check in-app “About” dialog for compatibility information.

Contributing

Development

Our projects are open source and you can contribute via GitHub (fork and pull request):

	https://github.com/FAIRDataTeam/FAIRDataPoint

	https://github.com/FAIRDataTeam/FAIRDataPoint-client

	https://github.com/FAIRDataTeam/OpenRefine-metadata-extension

Changelog

Overview

Here we summarize the key features and changes for each FAIR Data Point release. For details including bugfixes and minor changes, see Detailed changelog.

1.14.0

	Security audit via GitHub Actions (Snyk and CodeQL)

	Introduced metadata schemas (as replacement of shapes) including versioning and importing

	Updated RDF4J to 4.0

	Several dependencies updated

1.13.0

	Added restriction to URL prefixes of Resource Definitions

	Upgraded Java JDK from 16 to 17, updated SpringDoc OpenAPI UI and several other dependencies

	Compliance with FDP-O ontology (fdp-o:FAIRDataPoint)

	Added form preview to shape edit

1.12.0

	Settings (metrics and ping) can be adjusted directly from UI

	Default values can be specified using sh:defaultValue

	**/expanded endpoint marked as deprecated (may be removed in the following version)

	Fixed bugs related to resource definition (same child relations, multiple parents)

	Fixed computing cache on DB migration and reset to defaults and ordering or resource definitions

1.11.0

	All metadata have dct:conformsTo with profile based on resource definition

	Resolving labels for RDF resources

	Registration of standard namespaces in RDF output

	Resource definitions are now related directly to shapes

	Fixed metadata with empty keywords and pagination

1.10.0

	Reset to factory defaults (users, metadata, resource definitions)

	Improved UX for browsing child metadata

	Allow to change internal shapes (and delete dataset and distribution)

	Several dependencies updated (including Java 16)

1.9.0

	Publishing and sharing SHACL shapes between FDPs

	Metadata children pagination

	Generating OpenAPI based on resource definitions

	Several dependencies updates including Spring Boot 2.4.5

1.8.0

	Added Admin UI to FDP Index with possibility to trigger metadata retrieval, change settings, or delete entry

	Several bug fixes and dependencies updated (including Java 15)

1.7.0

	Including FDP Index functionality into FAIR Data Point with harvesting metadata

	Metadata search including RDF types

	Possibility to change profile and password for current user

1.6.0

	API keys for making integrations with FDP easier

	State “draft” for created metadata

1.5.0

	Support for editable resource definitions

	Possibility to specify custom storage in OpenRefine using frontend

1.4.0

	Ping service for call home functionality

	Suggesting prefixes for namespaces

1.3.0

	Introduced DASH [http://datashapes.org/dash] and dynamic SHACL shapes

	Audit log in OpenRefine extension to keep track of actions performed

1.2.0

	Option to customize metamodel (metadata layers)

	Possibility to delete and create metadata entities

1.1.0

	New monitoring and configuration for client application

	Several further improvements in terms of technical debt

	Enhanced connecting to FDP from OpenRefine extension and update to OpenRefine 3.3

1.0.0

	User management, enhanced security, and ACL

	Huge refactoring and upgrades of previously accumulated features and technical debt

	Separate project for FAIR Data Point Client [https://github.com/FAIRDataTeam/FAIRDataPoint-client] (frontend application using FDP API)

	New OpenRefine Metadata Extension [https://github.com/FAIRDataTeam/OpenRefine-metadata-extension] as a replacement for the deprecated FAIRifier

Detailed changelog

Each of components developed has its own Changelog based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and our projects adhere to Semantic Versioning [https://semver.org/spec/v2.0.0.html]. It is recommended to use matching
versions of all components.

	FAIR Data Point Changelog [https://github.com/FAIRDataTeam/FAIRDataPoint/blob/develop/CHANGELOG.md]

	FAIR Data Point Client Changelog [https://github.com/FAIRDataTeam/FAIRDataPoint-client/blob/develop/CHANGELOG.md]

	OpenRefine Metadata Extensions Changelog [https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/blob/develop/CHANGELOG.md]

Index

 nav.xhtml

 Table of Contents

 		
 FAIR Data Point Reference Implementation Documentation

 		
 About FAIR Data Point

 		
 Features

 		
 Security

 		
 Users and Roles

 		
 FAIR Data Point Roles

 		
 Admin

 		
 User

 		
 Catalog Roles

 		
 Owner

 		
 Data Provider

 		
 Dataset Roles

 		
 Owner

 		
 Components

 		
 Triple Store

 		
 MongoDB

 		
 FAIRDataPoint

 		
 FAIRDataPoint-client

 		
 Reverse Proxy

 		
 Local Deployment

 		
 Running locally on a different port

 		
 Persistence

 		
 MongoDB volume

 		
 Persistent Repository

 		
 Production Deployment

 		
 Advanced Configuration

 		
 Triple Stores

 		
 1. In-Memory Store

 		
 2. Native Store

 		
 3. Allegro Graph

 		
 4. GraphDB

 		
 5. Blazegraph

 		
 Mongo DB

 		
 Default attached metadata

 		
 FDP Index

 		
 Hosting FDP Index

 		
 Connecting to FDP Index

 		
 FDP Index behind proxy

 		
 Customizations

 		
 Customization files

 		
 Example of setting a custom logo

 		
 Running FDP on a nested route

 		
 Usage

 		
 Resource definitions

 		
 Managing resource definitions

 		
 Shapes

 		
 Creating a new shape

 		
 User interface directives

 		
 Extending an existing shape

 		
 Limitations

 		
 API Usage

 		
 Obtaining an API token

 		
 Issueing a request with the authorization token

 		
 Interacting with metadata

 		
 Retrieving metadata

 		
 Creating metadata

 		
 Update metadata

 		
 API endpoint listing

 		
 Usage

 		
 About metadata extension

 		
 Features

 		
 Store FAIR data

 		
 Create metadata in FAIR Data Point

 		
 Setup

 		
 Installation

 		
 Installed OpenRefine

 		
 With Docker

 		
 Configuration

 		
 Settings

 		
 Storages

 		
 Compatibility

 		
 Contributing

 		
 Development

 		
 Changelog

 		
 Overview

 		
 1.14.0

 		
 1.13.0

 		
 1.12.0

 		
 1.11.0

 		
 1.10.0

 		
 1.9.0

 		
 1.8.0

 		
 1.7.0

 		
 1.6.0

 		
 1.5.0

 		
 1.4.0

 		
 1.3.0

 		
 1.2.0

 		
 1.1.0

 		
 1.0.0

 		
 Detailed changelog

_images/structure-overview.png
Revrse Proxy

]

FAIRDataPoint-client

]

FAIRDataPoint

Triple Store MongoDB

_static/plus.png

_static/file.png

_static/minus.png

