

FAIR Data Point Documentation

User Documentation

	About FAIR Data Point
	Features

	Security

Deployment

	Installation
	FAIR Data Point

	FDP Client

	Setting up a reverse proxy

	Configuration
	Application Configuration

	Customizations

OpenRefine Extension

	Usage
	About metadata extension

	Features

	Setup
	Installation

	Configuration

	Compatibility

Development

	Contributing
	Development

	Roadmap

About FAIR Data Point

FAIRDataPoint is a REST API and Web Client for creating, storing, and serving
FAIR metadata. The metadata contents are generated
semi-automatically according to the FAIR Data Point software
specification [https://dtl-fair.atlassian.net/wiki/display/FDP/FAIR+Data+Point+software+specification]
document.

Features

	Store catalogs, datasets, and distributions

	Manage users

	Manage access rights to your catalogs, datasets, and distributions

Security

We have two levels of accessibility in FDP. All resources (e.g., catalogs, datasets,…) are publicly accessible. You don’t need to be logged in to browse them. If you want to upload your own resources, you need to be logged in. To get an account, you need to contact an administrator of the FDP. By default, all uploaded resources are publicly accessible by anyone. But if you want to allow someone to manage your resources (edit/delete), you need to allow it in the resource settings.

We have two types of roles in FDP - an administrator and a user. The administrator is allowed to manage users and all resources. The user can manage just the resources which he owns.

Installation

FAIR Data Point

FAIR Data Point is distributed as a Docker image. For a basic setup, you
need to run just Mongo DB database [https://docs.mongodb.com/]. You
can use Docker Compose to run FDP and Mongo DB together:

	Create a folder (e.g., /fdp) and enter it

	Copy docker-compose.yml provided below

	Run the FAIR Data Point with Docker compose docker-compose up -d

	After starting up, you will be able to open the FAIR Data Point in
your browser on http://localhost

	You can use docker-compose logs to see the logs and
docker-compose down to stop all the services

version: '3'
services:

 fdp:
 image: fairdata/fairdatapoint
 restart: always
 ports:
 - 80:80

 mongo:
 image: mongo:4.0.12
 restart: always
 ports:
 - 27017:27017
 command: mongod

Default users

Initially, migrations will fill the database with predefined data needed including users, all with password “password”:

	albert.einstein@example.com (admin)

	nikola.tesla@example.com (user)

You can use those accounts for testing or to initially made your own account admin and then delete them.

Danger

Having public instance with default accounts is a security risk. Delete or change default accounts (mainly Albert Einstein) if your FDP instance is public as soon as possible.

FDP Client

You can run FAIR Data Point without the client if you need the API only.
If you want a user interface for browsing the metadata and
administration of the FAIR Data Point metadata and users, you can deploy
FAIR Data Point together with this client.

FDP Client works as a proxy before the FAIR Data Point itself. It
decides which request should pass through to the FDP (e.g., API calls)
and which should be handled by the client (requests from browsers).
Therefore, you no longer need to have FAIR Data Point exposed publicly.

FAIR Data Point Client is distributed as a Docker image. It runs
together with the FAIR Data Point.

Configuration

	ENV Variable

	Description

	FDP_HOST

	A hostname of the FAIR Data Point (within the Docker network).

	PUBLIC_PATH

	Use only if FDP is not running at the root, you need to specify the URL. For example, if you run FDP at https://example.com/fairdatapoint, PUBLIC_PATH should be /fairdatapoint.

Example

Here is an example Docker Compose [https://docs.docker.com/compose/]
configuration to run FDP and FDP client together:

version: '3'
services:
 server:
 image: fairdata/fairdatapoint
 # ... FDP configuration

 client:
 image: fairdata/fairdatapoint-client
 ports:
 - 80:80
 environment:
 - FDP_HOST=server # using hostname within the Docker network

You can have a look at a complete example in FAIR Data Point Example repository [https://github.com/FAIRDataTeam/FAIRDataPoint-Example].

Tip

It is recommended to run FDP and FDP client behind a reverse proxy with SSL certificates. See further in the docs examples how to do that.

Here is a diagram with the overview of different componets of the FAIR Data Point.

[image: Overview]

Setting up a reverse proxy

If you want to run publicly available FDP, you should use HTTPS protocol
with valid certificates. It is easy to configure FDP to run behind a
reverse proxy which takes care of the certificates. Here are some
examples of how to configure nginx as a reverse proxy for FDP in
different cases.

When setting proxy_pass, there is a <client_host> placeholder.
Use the name of the Docker container in your deployment instead. Also,
you need to set up Docker DNS resolver somewhere in the configuration.

resolver 127.0.0.11 valid=10s;

Running FDP on domain root

This is an example of running FDP as the root application on domain
fairdatapoint.example.com.

server {
 listen 443 ssl;
 ssl_certificate /etc/letsencrypt/live/fairdatapoint.example.com/fullchain.pem;
 ssl_certificate_key /etc/letsencrypt/live/fairdatapoint.example.com/privkey.pem;

 server_name fairdatapoint.example.com;

 location / {
 proxy_pass http://<client_host>;
 proxy_set_header Host $host;
 proxy_pass_request_headers on;
 }
}

Redirect to https
server {
 listen 80;
 server_name fairdatapoint.example.com;
 return 301 https://$host$request_uri;
}

Running FDP on a nested route

Sometimes, you might want to run FDP alongside other applications on the
same domain. Here is an example of running FDP on
example.com/faidatapoint. If you run FDP in this configuration, you
have to set PUBLIC_PATH ENV variable, in this example to
/fairdatapoint.

server {
 # Configruation for the server, certificates, etc.

 # Define the location FDP runs on
 location ~ /fairdatapoint(/.*)?$ {
 rewrite /fairdatapoint(/.*) $1 break;
 rewrite /fairdatapoint / break;
 proxy_pass http://<client_host>;
 proxy_set_header Host $host;
 proxy_pass_request_headers on;
 }
}

When running on nested route, don’t forget to change paths to all
custom assets referenced in SCSS files.

Configuration

Application Configuration

You can override default settings in application-production.yml
file. You can take inspiration in the default
configuration [https://github.com/FAIRDataTeam/FAIRDataPoint/blob/develop/src/main/resources/application.yml]
and default production
configuration [https://github.com/FAIRDataTeam/FAIRDataPoint/blob/develop/src/main/resources/application-production.yml].
Create the application-production.yml in the /fdp folder and
attach it into a docker container using volumes directive.

fdp:
 image: fairtools/fairdatapoint
 restart: always
 volumes:
 - ./application-production.yml:/fdp/application-production.yml
 ports:
 - 80:8080

Possible configuration

Here you can list possible configuration. The configuration marked as
required should be addressed if you are intending to use the FDP
professionally.

	Customization

	Level

	Description

	Application (instance) URL

	Required

	Override property instance.url (e.g., http://fdp-staging.fair-dtls.surf-hosted.nl)

	Server Port

	Optional

	Override property server.port (e.g., 80)

	JWT Token secret

	Required

	Override property security.jwt.token.secret-key

	Metadata Properties

	Optional

	Override property metadataProperties with nested properties: rootSpecs, catalogSpecs, datasetSpecs, distributionSpecs, publisherURI, publisherName, language, license, accessRightsDescription

	Metadata Metrics

	Optional

	Override property metadataMetrics. Nested properties are captured as Map with metric uri as a key (e.g., https://purl.org/fair-metrics/FM_F1A) and with its value (e.g., https://www.ietf.org/rfc/rfc3986.txt)

	PID

	Optional

	Override property pid. You can choose between 2 types of persistent identifiers (default PIDSystem (1), purl.org PID System (2)). Select one of those and write the number of the type into type property. To configure the concrete PID System, create a property named by the type of the PID System and include the required information for that repository. For default, you don’t need to configure anything. For purl, you need to configure baseUrl.

	Mongo DB

	Required

	Override property spring.data.mongodb.uri with connection string (e.g. mongodb://mongo:27017/fdp)

	Triple Store

	Required

	Override property repository. You can choose between 5 types of triple stores (inMemoryStore (1), NativeStore (2), AllegroGraph (3), graphDB (4), blazegraph (5)). Select one of those and write the number of the type into type property. To configure the concrete repository, create a property named by the type of repository and include the required information for that repository. For agraph, you need to configure url, username and password. For graphDb, you need to configure url and repository. For blazegraph, you need to configure url and repository. And for native, you need to configure /tmp/fdp-store.

Customizations

You can customize the look and feel of FDP Client using
SCSS [https://sass-lang.com]. There are three files you can mount to
/src/scss/custom. If there are any changes in these files, the
styles will be regenerated when FDP Client starts.

Customization files

_variables.scss

A lot of values related to styles are defined as variables. The easiest
way to customize the FDP Client is to define new values for these
variables. To do so, you create a file called _variables.scss where
you define the values that you want to change.

Here is an example of changing the primary color.

// _variables.scss

$color-primary: #087d63;

Have a look in src/scss/_variables.scss [https://github.com/FAIRDataTeam/FAIRDataPoint-client/blob/develop/src/scss/_variables.scss]
to see all the variables you can change.

_extra.scss

This file is loaded before all other styles. You can use it, for
example, to define new styles or import fonts.

_overrides.scss

This file is loaded after all other styles. You can use it to override
existing styles.

Example of setting a custom logo

To change the logo, you need to do three steps:

	Create _variables.scss with correct logo file name and dimensions

	Mount the new logo to the assets folder

	Mount _variables.scss to SCSS custom folder

// _variables.scss

$header-logo-url: '/assets/my-logo.png'; // new logo file
$header-logo-width: 80px; // width of the new logo
$header-logo-height: 40px; // height of the new logo

docker-compose.yml
version: '3'
services:
 server:
 # ... FDP configuration

 client:
 # ... FDP Client configuration
 volumes:
 # Mount new logo file to assets in the container
 - ./my-logo.png:/usr/share/nginx/html/assets/my-logo.png:ro

 # Mount _variables.scss so that styles are regenerated
 - ./_variables.scss:/src/scss/custom/_variables.scss:ro

Usage

Here you can read how to use the metadata extension for OpenRefine to store FAIR data and create metadata in FAIR Data Point.

About metadata extension

The metadata extension for OpenRefine promotes FAIRness of the data by its integration with FAIR Data Point. With the extension you can easily FAIRify your data that you work on in directly in OpenRefine in two steps:

	Store FAIR data in configured storage.

	Create metadata in FAIR Data Point in selected FAIR Data Point.

It replaces the legacy project called FAIRifier [https://github.com/FAIRDataTeam/FAIRifier].

Features

The extension provides the features only through FAIR Metadata extension menu located in top right corner above data table (typically next to Wikidata and others).

Store FAIR data

	Open the dialog for storing the data by clicking FAIR Metadata > Store data to FAIR storage

	Select the desired storage (see Storages)

	Select the desired format (the selection changes based on storage)

	Press Preview (download) to download the file to verify the contents

	Press Store to store the data in the storage

	You will see the URL to the file which you can easy copy to clipboard by clicking a button

Create metadata in FAIR Data Point

	Open the dialog for creating the metadata by clicking FAIRMetadata > Create metadata in FAIR Data Point

	Select pre-configured FAIR Data Point connection or select Custom FDP connection and fill information (if allowed, see Settings)

	Press Connect to connect to the selected FAIR Data Point

	Select a catalog from available or create a new one

	For a new one, fill in the metadata form (see also the optional fields) and press Create catalog

	Select a dataset from available or create a new one

	For a new one, fill in the metadata form (see also the optional fields) and press Create dataset

	Create a new distribution

	Fill in the metadata form (se also the optional fiels)

	For the download URL you can easily access Store FAIR data feature and field will be filled after storing the data

	Check your new distribution (and/or other layers) listed

Setup

This part describes how to set up your own OpenRefine with the metadata extension and how to configure it according to your needs.

Installation

There are two ways of using our metadata extension for OpenRefine. You can have installed OpenRefine and add extension to it or use Docker with our prepared image.

Installed OpenRefine

This option requires you to have installed compatible version of OpenRefine, please check Compatibility. In case you need to install OpenRefine first, visit their documentation [https://github.com/OpenRefine/OpenRefine/wiki/Installation-Instructions].

	Get the desired version of the metadata extension from our GitHub releases page [https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/releases] by downloading tgz or zip archive, e.g., metadata-1.0.0-OpenRefine-3.2.zip.

	Extract the archive to extensions folder of your OpenRefine (see OpenRefine documentation [https://github.com/OpenRefine/OpenRefine/wiki/Installing-Extensions]).

unzip metadata-1.0.0-OpenRefine-3.2.zip path/to/openrefine-3.2/webapp/extensions

With Docker

If you want to use Docker, we provide a Docker image fairdata/openrefine-metadata-extension [https://hub.docker.com/r/fairdata/openrefine-metadata-extension] that combines the extension with OpenRefine of supported version. It is of course possible to use volume for the data directory (eventually data/extensions to include other extensions). All you need to have is Docker running and then:

docker run -p 3333:3333 -v /home/me/openrefine-data:/data:z fairdata/openrefine-metadata-extension

This will run the OpenRefine with metadata extension on port 3333 that will be exposed and mounts your folder /home/me/openrefine-data as OpenRefine data folder. You should be able to open OpenRefine in browser on localhost:3333. If there are some other extensions in /home/me/openrefine-data/extensions, those should be loaded as well. For more information, see OpenRefine documentation [https://github.com/OpenRefine/OpenRefine/wiki/Installing-Extensions].

For configuration files you need to mount /webapp/extensions/metadata/module/config, see Configuration for more details.

Configuration

Configuration files of the metadata extension use the YAML format and are stored in extensions/metadata/module/config directory of the used OpenRefine installment. The configuration files are loaded when OpenRefine is started. Therefore, you are required to restart OpenRefine before changes in configuration files take effect. We provide examples [https://github.com/FAIRDataTeam/OpenRefine-metadata-extension/tree/develop/src/main/resources/module/config] of the configuration files that you can (re)use.

Settings

Settings configuration file serves for generic configuration options that adjust behaviour of the extension. The structure of the file is following:

	allowCustomFDP (boolean) = should be user allowed to enter custom FAIR Data Point URI, username, and password (or use only the pre-configured)

	metadata (map) = key-value specification of instance-wide pre-defined metadata, e.g., set license to http://purl.org/NET/rdflicense/cc-by3.0 and that URI will be pre-set in all metadata forms in field license (but can be overwritten by the user)

	fdpConnections (list) = list of pre-configured FAIR Data Point connections that users can use, each is object with attributes:

	name (string) = custom name identifying the connection

	baseURI (string) = base URI of FAIR Data Point

	email (string) = email address identifying user of FAIR Data Point

	password (string) = password for authenticating the user of FAIR Data Point

	preselected (boolean, optional) = flag if should be pre-selected in the form (in case that more connections have this set to true, only first one is applied)

	metadata (map, optional) = similar to instance-wide but only for specific connection

Storages

Storages configuration file holds details about storages that are possible to use for Store FAIR data feature. In the file, list of storage object is expected where each of them has:

	name (string) = custom name identifying the storage

	type (string) = one of the allowed types (others are ignored): ftp, virtuso, tripleStoreHTTP

	enabled (string) = flag if should be offered to the user

	username (string, optional) = username for authentication

	password (string, optional) = password for authentication

	host (string) = URI of the storage server

	directory (string) = directory or other location for storing the data

For FTP and Virtuoso, directory should containt absolute path where files should be stored. In case of triple stores, repository name is used to specify the target location.

Compatibility

	metadata extension

	OpenRefine

	FAIR Data Point

	vX.Y.Z

	3.3-beta, 3.2

	vX.Y.Z

Contributing

Development

Our projects are open source and you can contribute via GitHub (fork and pull request):

	https://github.com/FAIRDataTeam/FAIRDataPoint

	https://github.com/FAIRDataTeam/FAIRDataPoint-client

	https://github.com/FAIRDataTeam/OpenRefine-metadata-extension

Roadmap

Index

 nav.xhtml

 Table of Contents

 		
 FAIR Data Point Documentation

 		
 About FAIR Data Point

 		
 Features

 		
 Security

 		
 Installation

 		
 FAIR Data Point

 		
 Default users

 		
 FDP Client

 		
 Setting up a reverse proxy

 		
 Running FDP on domain root

 		
 Running FDP on a nested route

 		
 Configuration

 		
 Application Configuration

 		
 Possible configuration

 		
 Customizations

 		
 Customization files

 		
 Example of setting a custom logo

 		
 Usage

 		
 About metadata extension

 		
 Features

 		
 Store FAIR data

 		
 Create metadata in FAIR Data Point

 		
 Setup

 		
 Installation

 		
 Installed OpenRefine

 		
 With Docker

 		
 Configuration

 		
 Settings

 		
 Storages

 		
 Compatibility

 		
 Contributing

 		
 Development

 		
 Roadmap

_images/overview.png
HTTP Client

Reverse Proxy

FAIR Data Point
Client

FAIR Data Point

Mongo DB

Triple Store

_static/plus.png

_static/file.png

_static/minus.png

